Login / Signup

Soft-matter properties of multilayer chromosomes.

Joan-Ramon Daban
Published in: Physical biology (2021)
This perspective aims to identify the relationships between the structural and dynamic properties of chromosomes and the fundamental properties of soft-matter systems. Chromatin is condensed into metaphase chromosomes during mitosis. The resulting structures are elongated cylinders having micrometer-scale dimensions. Our previous studies, using transmission electron microscopy, atomic force microscopy, and cryo-electron tomography, suggested that metaphase chromosomes have a multilayered structure, in which each individual layer has the width corresponding to a mononucleosome sheet. The self-assembly of multilayer chromatin plates from small chromatin fragments suggests that metaphase chromosomes are self-organized hydrogels (in which a single DNA molecule crosslinks the whole structure) with an internal liquid-crystal order produced by the stacking of chromatin layers along the chromosome axis. This organization of chromatin was unexpected, but the spontaneous assembly of large structures has been studied in different soft-matter systems and, according to these studies, the self-organization of chromosomes could be justified by the interplay between weak interactions of repetitive nucleosome building blocks and thermal fluctuations. The low energy of interaction between relatively large building blocks also justifies the easy deformation and structural fluctuations of soft-matter structures and the changes of phase caused by diverse external factors. Consistent with these properties of soft matter, different experimental results show that metaphase chromosomes are easily deformable. Furthermore, at the end of mitosis, condensed chromosomes undergo a phase transition into a more fluid structure, which can be correlated to the decrease in the Mg2+concentration and to the dissociation of condensins from chromosomes. Presumably, the unstacking of layers and chromatin fluctuations driven by thermal energy facilitate gene expression during interphase.
Keyphrases
  • gene expression
  • dna damage
  • transcription factor
  • genome wide
  • electron microscopy
  • high resolution
  • dna methylation
  • atomic force microscopy
  • drug delivery
  • high frequency
  • copy number
  • high speed
  • circulating tumor