A Density-Based Basis-Set Correction for Wave Function Theory.
Pierre-François LoosBarthélémy PradinesAnthony ScemamaJulien ToulouseEmmanuel GinerPublished in: The journal of physical chemistry letters (2019)
We report a universal density-based basis-set incompleteness correction that can be applied to any wave function method. This correction, which appropriately vanishes in the complete basis-set (CBS) limit, relies on short-range correlation density functionals (with multideterminant reference) from range-separated density-functional theory (RS-DFT) to estimate the basis-set incompleteness error. Contrary to conventional RS-DFT schemes that require an ad hoc range-separation parameter μ, the key ingredient here is a range-separation function μ(r) that automatically adapts to the spatial nonhomogeneity of the basis-set incompleteness error. As illustrative examples, we show how this density-based correction allows us to obtain CCSD(T) atomization and correlation energies near the CBS limit for the G2 set of molecules with compact Gaussian basis sets.