Variations in the glucosinolates of the individual edible parts of three stem mustards (Brassica juncea).
Bo SunYu-Xiao TianQing ChenYong ZhangYa LuoYan WangMeng-Yao LiRong-Gao GongXiao-Rong WangFen ZhangHao-Ru TangPublished in: Royal Society open science (2019)
The composition and content of glucosinolates were investigated in the edible parts (petioles, peel and flesh) of tuber mustard, bamboo shoots mustard and baby mustard by high-performance liquid chromatography to reveal the association between the different cooking methods and their glucosinolate profiles. Eight glucosinolates were identified from tuber mustard and baby mustard, including three aliphatic glucosinolates, four indole glucosinolates and one aromatic glucosinolate. Only six of the eight glucosinolates were detected in bamboo shoots mustard. The results show that the distribution and content of glucosinolates varied widely among the different tissues and species. The highest contents of glucosinolates in tuber mustard, bamboo shoots mustard and baby mustard were found in flesh, petioles and peel, respectively. The content of total glucosinolates ranged from 5.21 µmol g-1 dry weight in bamboo shoots mustard flesh to 25.64 µmol g-1 dry weight in baby mustard peel. Aliphatic glucosinolates were predominant in the three stem mustards, followed by indole and aromatic glucosinolates. Sinigrin was the predominant glucosinolate in the three stem mustards. Sinigrin content in tuber mustard was slightly higher than that in baby mustard and much higher than that in bamboo shoots mustard, suggesting that the pungent-tasting stem mustards contained more sinigrin. In addition, a principal components analysis showed that bamboo shoots mustard was distinguishable from the other two stem mustards. A variance analysis indicated that the glucosinolates were primarily influenced by a species × tissue interaction. The correlations among glucosinolates were also analysed.