Login / Signup

Data-Driven Methods for Accelerating Polymer Design.

Tarak K Patra
Published in: ACS polymers Au (2021)
Optimal design of polymers is a challenging task due to their enormous chemical and configurational space. Recent advances in computations, machine learning, and increasing trends in data and software availability can potentially address this problem and accelerate the molecular-scale design of polymers. Here, the central problem of polymer design is reviewed, and the general ideas of data-driven methods and their working principles in the context of polymer design are discussed. This Review provides a historical perspective and a summary of current trends and outlines future scopes of data-driven methods for polymer research. A few representative case studies on the use of such data-driven methods for discovering new polymers with exceptional properties are presented. Moreover, attempts are made to highlight how data-driven strategies aid in establishing new correlations and advancing the fundamental understanding of polymers. This Review posits that the combination of machine learning, rapid computational characterization of polymers, and availability of large open-sourced homogeneous data will transform polymer research and development over the coming decades. It is hoped that this Review will serve as a useful reference to researchers who wish to develop and deploy data-driven methods for polymer research and education.
Keyphrases
  • machine learning
  • big data
  • electronic health record
  • healthcare
  • artificial intelligence
  • minimally invasive
  • data analysis
  • current status