Login / Signup

The Influence of the Addition of Basalt Powder on the Properties of Foamed Geopolymers.

Michał ŁachBarbara KozubSebastian BednarzAgnieszka BąkMykola MelnychukAdam Masłoń
Published in: Materials (Basel, Switzerland) (2024)
Geopolymers are binder materials that are produced by a chemical reaction between silica or aluminum compounds with an alkaline activating solution. Foamed geopolymer materials are increasingly being cited as a viable alternative to popular organic insulation materials. Since the foaming process of geopolymers is difficult to control, and any achievements in improving the performance of such materials are extremely beneficial, this paper presents the effect of the addition of basalt powder on the properties of foamed geopolymers. This paper presents the results of physicochemical studies of fly ash and basalt, as well as mechanical properties, thermal properties, and structure analysis of the finished foams. The scope of the tests included density tests, compressive strength tests, tests of the thermal conductivity coefficient using a plating apparatus, as well as microstructure tests through observations using light and scanning microscopy. Ground basalt was introduced in amounts ranging from 0 to 20% by mass. It was observed that the addition of basalt powder contributes to a reduction in and spheroidization of pores, which directly affect the density and pore morphology of the materials tested. The highest density of 357.3 kg/m 3 was characterized by samples with a 5 wt.% basalt powder addition. Their density was 14% higher than the reference sample without basalt powder addition. Samples with 20 wt.% basalt addition had the lowest density, and the density averaged 307.4 kg/m 3 . Additionally, for the sample containing 5 wt.% basalt powder, the compressive strength exceeded 1.4 MPa, and the thermal conductivity coefficient was 0.1108 W/m × K. The effect of basalt powder in geopolymer foams can vary depending on many factors, such as its chemical composition, grain size, content, and physical properties. The addition of basalt above 10% causes a decrease in the significant properties of the geopolymer.
Keyphrases
  • high resolution
  • signaling pathway
  • computed tomography
  • multiple sclerosis
  • heavy metals
  • sewage sludge
  • electron microscopy
  • electron transfer