Intra- vs Intermolecular Cross-Links in Poly(methyl methacrylate) Networks Containing Enamine Bonds.
Soheil SharifiIsabel Asenjo-SanzDaniel E Martínez-TongÁngel AlegríaPublished in: Macromolecules (2022)
The molecular dynamics of a copolymer composed of methyl methacrylate (MMA) and (2-acetoacetoxy)ethyl methacrylate (AEMA) monomers and the influence on it of intra- to intermolecular cross-links of AEMA units with ethylenediamine (EDA) was studied by combining dielectric relaxation experiments and thermal investigations. The dielectric spectra of the non-cross-linked copolymer show three dynamical processes: a slow relaxation (α) and a faster (β), both dominated by the MMA dynamics, and an even faster secondary relaxation (γ) reflecting the AEMA dynamics. Already for low cross-linking densities, the γ process is very much affected and eventually disappears, increasing the cross-linking density. The secondary β relaxation however was nearly unaffected by cross-linking. The effect of cross-linking on the α relaxation was very pronounced with an important increasing of the glass transition temperature T g . There was also an increase of the dynamic heterogeneity and the relaxation intensity when increasing the cross-linking density (up to the maximum explored, 9 mol % EDA). The quality of the average time scale and T g value have similarities in behavior for intra- and intermolecular cross-linking, but clear differences in the dynamic heterogeneities where observed. These differences can be interpreted in connection with the sparse internal structure of the collapsed single chains obtained by intramolecular cross-linking.