Modulation of Deep-Red to Near-Infrared Room-Temperature Charge-Transfer Phosphorescence of Crystalline "Pyrene Box" Cages by Coupled Ion/Guest Structural Self-Assembly.
Weixu FengDong ChenYan ZhaoBin MuHongxia YanMihail BarboiuPublished in: Journal of the American Chemical Society (2024)
Organic cocrystals obtained from multicomponent self-assembly have garnered considerable attention due to their distinct phosphorescence properties and broad applications. Yet, there have been limited reports on cocrystal systems that showcase efficient deep-red to near-infrared (NIR) charge-transfer (CT) phosphorescence. Furthermore, effective strategies to modulate the emission pathways of both fluorescence and phosphorescence remain underexplored. In this work, we dedicated our work to four distinct self-assembled cocrystals called "pyrene box" cages using 1,3,6,8-pyrenetetrasulfonate anions ( PTS 4- ), 4-iodoaniline ( 1 ), guanidinium ( G + ), diaminoguanidinium ( A 2 G + ), and hydrated K + countercations. The binding of such cations to PTS 4 - platforms adaptively modulates their supramolecular stacking self-assembly with guest molecules 1 , allowing to steer the fluorescence and phosphorescence pathways. Notably, the confinement of guest molecule 1 within "pyrene box" PTSK{1} and PTSG{1} cages leads to an efficient deep-red to NIR CT phosphorescence emission. The addition of fuming gases like triethylamine and HCl allows reversible pH modulations of guest binding, which in turn induce a reversible transition of the "pyrene box" cage between fluorescence and phosphorescence states. This capability was further illustrated through a proof-of-concept demonstration in shrimp freshness detection. Our findings not only lay a foundation for future supramolecular designs leveraging weak intermolecular host-guest interactions to engineer excited states in interacting chromophores but also broaden the prospective applications of room-temperature phosphorescence materials in food safety detection.
Keyphrases
- room temperature
- ionic liquid
- energy transfer
- water soluble
- binding protein
- transcription factor
- single molecule
- computed tomography
- magnetic resonance imaging
- contrast enhanced
- fluorescent probe
- image quality
- emergency department
- positron emission tomography
- dna binding
- working memory
- climate change
- living cells
- electronic health record
- quantum dots
- human health