Login / Signup

Optimal number of chemical extraction treatments for maintaining the biological properties of an allogeneic tendon.

Peng ChenChangqing JiangLi ShenWentao ZhangLixin Zhu
Published in: Cell and tissue banking (2018)
The aim of this study was to explore the biological effects of the amount of chemical extraction treatments performed on an allogeneic tendon through histomorphology, biological mechanics testing, and an immunogenicity assay. Sixteen New Zealand rabbits (body weight 2.5-3.0 kg) were randomly divided into four groups: group A (chemical extraction once), group B (chemical extraction twice), group C (chemical extraction three times), and group D (blank control group), with four rabbits in each group. The Achilles tendons of each rabbit were separated and subjected to a chemical extraction process with Triton X-100 and sodium deoxycholate, followed by hematoxylin and eosin staining, electron microscopy observation, biomechanical testing, and mixed lymphocyte culture. There were no significant differences in the surface color and fiber bundles between groups A and B and the blank control group, whereas group C showed clear differences from the blank control group with a rough surface, loose fibers, and poor tension. There were no significant differences in the biomechanics among the four groups. The four groups showed significant differences in the lymphocyte conversion ratio, with reduced rates of lymphocyte conversion along with increasing treatment numbers. Two chemical extractions of the tendon allowed for retaining most of the integrity of the original tendon fiber while removing immunogenicity with good biological properties. These findings lay a foundation for application of this method to human tendons so as to provide a good tissue source for tendon transplantation.
Keyphrases
  • body weight
  • stem cell transplantation
  • bone marrow
  • endothelial cells
  • stem cells
  • anterior cruciate ligament reconstruction
  • high throughput
  • combination therapy