Short-Term Impact of Recycling-Derived Fertilizers on Their P Supply for Perennial Ryegrass ( Lolium perenne ).
Lea DeinertIsrael IkoyiBastian EgeterPatrick ForrestalAchim SchmalenbergerPublished in: Plants (Basel, Switzerland) (2023)
Various nutrient recycling technologies are currently under development in order to alleviate the dependency of non-renewable raw material for the production of mineral phosphorus fertilizers commonly used in agriculture. The resulting products, such as struvites and ashes, need to be assessed for their application as so-called recycling-derived fertilizers (RDFs) in the agricultural sector prior to commercialization. Here, we conducted a short-term (54 days) trial to investigate the impact of different phosphorus fertilizers on plant growth and the soil P cycling microbiota. Lolium perenne was grown with application of superphosphate (SP) as inorganic fertilizer, two ashes (poultry litter ash (PLA) and sewage sludge ash (SSA)), and two struvites (municipal wastewater struvite (MWS) and commercial CrystalGreen ® (CGS)) applied at 20 and 60 kg P ha -1 in four replicates. A P-free control (SP0) was also included in the trial. Struvite application increased plant dry weights, and available P acid phosphatase activity was significantly improved for struvites at the high P application rate. The ash RDFs showed a liming effect at 60 kg P ha -1 , and PLA60 negatively affected acid phosphatase activity, while PLA20 had significantly lower phoD copy numbers. P mobilization from phosphonates and phytates was not affected. TCP solubilization was negatively affected by mineral SP fertilizer application at both P concentrations. The bacterial (16S and phoD ) communities were only marginally affected by the tested P fertilizers. Overall, struvites appeared to be a suitable substitute for superphosphate fertilization for Irish L. perenne pastures.