Identification and Analysis of Potential Genes Regulated by an Alphasatellite (TYLCCNA) that Contribute to Host Resistance against Tomato Yellow Leaf Curl China Virus and Its Betasatellite (TYLCCNV/TYLCCNB) Infection in Nicotiana benthamiana.
Chaohu LuoZhan Qi WangXianan LiuLiling ZhaoXueping ZhouYan XiePublished in: Viruses (2019)
Recently, begomovirus/betasatellite disease complexes were found to be associated with alphasatellites, and their presence modulated disease symptoms and/or viral DNA accumulation in infected plants. However, the biological functions of alphasatellites during begomovirus/betasatellite infections remain unclear. Tomato yellow leaf curl China virus (TYLCCNV) associated with a betasatellite (TYLCCNB) is a widespread monopartite begomovirus in China. In the Yunnan province of China, the TYLCCNV/TYLCCNB disease complex is found in association with an alphasatellite (TYLCCNA). In this study, in order to explain the mechanisms underlying TYLCCNV/TYLCCNB infection and reductions in viral DNA accumulation caused by TYLCCNA, we analyzed the transcriptome profiles of Nicotiana benthamiana seedlings challenged by TYLCCNV/TYLCCNB or TYLCCNV/TYLCCNB/TYLCCNA using RNA sequencing. In total, 2272 and 1207 differentially expressed genes (DEGs) were identified to respond to TYLCCNV/TYLCCNB and TYLCCNV/TYLCCNB/TYLCCNA infections, respectively. Compared with the DEGs in the TYLCCNV/TYLCCNB-infected N. benthamiana seedlings, the number of DEGs in plants co-infected with TYLCCNV/TYLCCNB + TYLCCNA was significantly reduced. Additionally, 36 DEGs were identified to be regulated by TYLCCNA, six of which were further analyzed using the virus-induced gene silencing (VIGS) approach. Silencing of these six TYLCCNA responsive DEGs caused more severe disease symptoms and higher viral DNA accumulation levels, suggesting that TYLCCNA responsive DEGs may attenuate TYLCCNV/TYLCCNB infection.