Cellulose nanofibril (CNF) films with both high strength and high toughness are attractive for applications in energy, packaging, and flexible electronics. However, simultaneously achieving these mechanical properties remains a significant challenge. Herein, a multiscale structural optimization strategy is proposed to prepare high aspect ratio CNFs with reduced crystallinity for strong and tough films. Carboxymethylation coupled with mild mechanical disintegration is employed to modulate the multiscale structure of CNFs. The as-prepared CNFs feature an aspect ratio of >800 and a crystallinity of <60 %. The film prepared using CNFs with a high aspect ratio (~1100) and reduced crystallinity (~54 %) exhibits a tensile strength of 229.9 ± 9.9 MPa and toughness of 22.2 ± 1.4 MJ/m 3 . The underlying mechanism for balancing these mechanical properties is unveiled. The high aspect ratio of the CNFs facilitates the transfer and distribution of local stress, thus endowing the corresponding film with high strength and toughness. Moreover, the low crystallinity of the CNFs permits the movement of the cellulose chains in the amorphous regions, thereby dissipating energy and finally increasing the film toughness. This work introduces an innovative and straightforward method for producing strong and tough CNF films, paving the way for their broader applications.