Login / Signup

Tunable Non-Markovianity for Bosonic Quantum Memristors.

Jia-Liang TangGabriel Alvarado BarriosEnrique SolanoFrancisco Albarrán-Arriagada
Published in: Entropy (Basel, Switzerland) (2023)
We studied the tunable control of the non-Markovianity of a bosonic mode due to its coupling to a set of auxiliary qubits, both embedded in a thermal reservoir. Specifically, we considered a single cavity mode coupled to auxiliary qubits described by the Tavis-Cummings model. As a figure of merit, we define the dynamical non-Markovianity as the tendency of a system to return to its initial state, instead of evolving monotonically to its steady state. We studied how this dynamical non-Markovianity can be manipulated in terms of the qubit frequency. We found that the control of the auxiliary systems affects the cavity dynamics as an effective time-dependent decay rate. Finally, we show how this tunable time-dependent decay rate can be tuned to engineer bosonic quantum memristors, involving memory effects that are fundamental for developing neuromorphic quantum technologies.
Keyphrases
  • energy transfer
  • molecular dynamics
  • density functional theory
  • quantum dots
  • solid state
  • room temperature
  • working memory