Theoretical Rotational and Vibrational Spectral Data for the Hypermagnesium Oxide Species Mg 2 O and Mg 2 O .
Athena R FlintBrent R WestbrookRyan C FortenberryPublished in: Chemphyschem : a European journal of chemical physics and physical chemistry (2024)
While magnesium is astronomically observed in small molecules, it largely serves as a contributor to silicate grains, though how these grains form is not well-understood. The smallest hypermagnesium oxide compounds (Mg 2 ${{}_{2}}$ O/Mg 2 ${{}_{2}}$ O + ${{}^{+}}$ ) may play a role in silicate formation, but little vibrational reference data exist. As such, anharmonic spectroscopic data are computed for X ˜ 1 Σ g + ${{{\tilde{\rm {X}}}}^1 {\rm{\Sigma }}_g^+ }$ Mg 2 ${{}_{2}}$ O, a ˜ 1 Σ u + ${{{\tilde{\rm {a}}}}^1 {\rm{\Sigma }}_u^+ }$ Mg 2 ${{}_{2}}$ O, and X ˜ 2 Σ g + ${{{\tilde{\rm {X}}}}^2 {\rm{\Sigma }}_g^+ }$ Mg 2 ${{}_{2}}$ O + ${{}^{+}}$ using quartic force fields (QFFs). Explicitly-correlated coupled-cluster QFFs for the neutral species perform well, implying that full multireference treatment may not be necessary for such systems if enough electron correlation is included. Equation-of-motion ionization potential (EOMIP) methods for X ˜ 2 Σ g + ${{{\tilde{\rm {X}}}}^2 {\rm{\Sigma }}_g^+ }$ Mg 2 ${{}_{2}}$ O + ${{}^{+}}$ QFFs circumvent previous symmetry breaking issues even in explicitly-correlated coupled-cluster results, motivating the need for EOMIP treatments at minimum for such systems. All three species are found to have high-intensity vibrational frequencies. Even so, the highly intense frequency ( X ˜ 1 Σ g + ${{{\tilde{\rm {X}}}}^1 {\rm{\Sigma }}_g^+ }$ Mg 2 ${{}_{2}}$ O: 894.7 cm -1 /11.18 μm; a ˜ 1 Σ u + ${{{\tilde{\rm {a}}}}^1 {\rm{\Sigma }}_u^+ }$ Mg 2 ${{}_{2}}$ O: 915.0 cm -1 /10.91 μm) for either neutral state may be astronomically obscured by the polycyclic aromatic hydrocarbon 11.2 μm band. Mg 2 ${{}_{2}}$ O + ${{}^{+}}$ may be less susceptible to such obfuscation, and its ν 1 ${{\nu }_{1}}$ intensity is computed to be a massive 4793 km mol -1 .