Semiconservative transmission of DNA N6-adenine methylation in a unicellular eukaryote.
Yalan ShengYuanyuan WangWentao YangXue Qing WangJiuwei LuBo PanBei NanYongqiang LiuFei YeChun LiJikui SongNils O LindströmShan GaoYifan LiuPublished in: Genome research (2024)
While DNA N6-adenine methylation (6mA) is best known in prokaryotes, its presence in eukaryotes has generated great interest recently. Biochemical and genetic evidence supports that AMT1, a MT-A70 family methyltransferase (MTase), is crucial for 6mA deposition in unicellular eukaryotes. Nonetheless, 6mA transmission mechanism remains to be elucidated. Taking advantage of Single Molecule Real-Time Circular Consensus Sequencing (SMRT CCS), here we provide definitive evidence for semiconservative transmission of 6mA in Tetrahymena thermophila In wild-type (WT) cells, 6mA occurs at the self-complementary ApT dinucleotide, mostly in full methylation (full-6mApT); after DNA replication, hemi-methylation (hemi-6mApT) is transiently present on the parental strand, opposite to the daughter strand readily labeled by 5-bromo-2'-deoxyuridine (BrdU). In ΔAMT1 cells, 6mA predominantly occurs as hemi-6mApT. Hemi-to-full conversion in WT cells is fast, robust, and processive, while de novo methylation in ΔAMT1 cells is slow and sporadic. In Tetrahymena , regularly spaced 6mA clusters coincide with linker DNA of nucleosomes arrayed in the gene body. Importantly, in vitro methylation of human chromatin by reconstituted AMT1 complex recapitulates preferential targeting of hemi-6mApT sites in linker DNA, supporting AMT1's intrinsic and autonomous role in maintenance methylation. We conclude that 6mA is transmitted by a semiconservative mechanism: full-6mApT is split by DNA replication into hemi-6mApT, which is restored to full-6mApT by AMT1-dependent maintenance methylation. Our study dissects AMT1-dependent maintenance methylation and AMT1-independent de novo methylation, reveals a 6mA transmission pathway with striking similarity to 5-methyl cytosine (5mC) transmission at the CpG dinucleotide, and establishes 6mA as a bona fide eukaryotic epigenetic mark.
Keyphrases
- genome wide
- dna methylation
- single molecule
- induced apoptosis
- cell cycle arrest
- gene expression
- circulating tumor
- endoplasmic reticulum stress
- copy number
- computed tomography
- cell free
- endothelial cells
- cell death
- signaling pathway
- squamous cell carcinoma
- atomic force microscopy
- pet ct
- single cell
- circulating tumor cells
- pet imaging
- clinical practice
- high density