Structure-Based Virtual Screening of High-Affinity ATP-Competitive Inhibitors Against Human Lemur Tyrosine Kinase-3 (LMTK3) Domain: A Novel Therapeutic Target for Breast Cancer.
Himakshi SarmaVenkata Satish Kumar MattaparthiPublished in: Interdisciplinary sciences, computational life sciences (2018)
Human lemur tyrosine kinase-3 (LMTK3) is an oncogenic kinase known to regulate ER-α through phosphorylation and is considered to be a novel therapeutic target for breast cancer. In this work, we have studied the ATP-binding mechanism with LMTK3 domain and also carried out virtual screening on LMTK3 to identify lead compounds using Dock blaster server. The top scored compounds obtained from Dock blaster were then narrowed down further to six lead compounds (ZINC37996511, ZINC83363046, ZINC3745998, ZINC50456700, ZINC83351792 and ZINC83364581) based on high-binding affinity and non-bonding interactions with LMTK3 using Autodock 4.2 program. We found in comparison to ATP, the lead compounds bind relatively stronger to LMTK3. The relative binding free energy results from MM-PBSA/GBSA method further indicate the strong binding affinity of lead compounds over ATP to LMTK3 in the dynamic system. Further, potential of mean force (PMF) study for ATP and lead compounds with LMTK3 have been performed to explore the unbinding processes and the free energy barrier. From the PMF results, we observed that the lead compounds have higher dissociation energy barriers than the ATP. Our findings suggest that these lead compounds may compete with ATP, and could act as probable potential inhibitors for LMTK3.