Login / Signup

Versatile Functional Porous Cobalt-Nickel Phosphide-Carbon Cocatalyst Derived from a Metal-Organic Framework for Boosting the Photocatalytic Activity of Graphitic Carbon Nitride.

Kui LiYu ZhangYe-Zhan LinKai WangFu-Tian Liu
Published in: ACS applied materials & interfaces (2019)
Metal-organic framework-templated g-C3N4-NiCoP2-porous carbon (PC) ternary hybrid nanomaterials were designed by taking full advantage of the metal-organic framework (MOF) derivative in the photocatalytic reaction for the first time. The MOF-templated porous structure could prevent the stacking of the carbon nitride nanosheet, and the carefully designed NiCoP2, possessing low electrocatalytic hydrogen evolution reaction (HER) overpotential and flat-band potential, could improve the separation as well as the utilization efficiency of photogenerated electron-hole pairs. Moreover, the ligand-templated porous carbon, acting as an interface mediator between g-C3N4 and the NiCoP2 cocatalyst, could boost the charge carrier transport. Consequently, the optimal ternary g-C3N4-NiCoP2-PC heterostructure exhibited enhanced photocatalytic HER performance and considerable H2 evolution performance of 5.8 μmol/h/g under UV-visible light with stoichiometric H2O2 production even in pure water. This work took full advantage of the MOF derivative for improving the photocatalytic reaction activity and provided a method that can hopefully help in designing a novel high-performance catalyst for solar conversion.
Keyphrases
  • metal organic framework
  • visible light
  • reduced graphene oxide
  • mass spectrometry
  • carbon dioxide
  • perovskite solar cells