Homologous blood transfusion and doping: Where are we now?
Alexandre MarchandMagnus EricssonPublished in: Drug testing and analysis (2024)
Homologous blood transfusion (HBT) is used for doping in endurance sports since the 1960s. The blood comes from a compatible donor, that is, someone with a compatible ABO and rhesus blood group. Despite been prohibited by the IOC in 1985, no detection method was available until 2003. Then came the idea to use red blood cells (RBC) minor blood groups antigens that constitute an "identity" card of someone's RBC to detect the presence of a second RBC population. The method validated for doping control samples uses flow cytometry after incubation of isolated RBC with eight to 12 primary antibodies against specific minor blood groups antigens. The presence of double populations of RBC is revealed by a major and a minor peak in a fluorescence histogram. The sensitivity was estimated sufficient to detect HBT for a few weeks. Despite the complexity and cost of the method, right after its application in 2004, several cases of HBT were identified but the number of cases dropped rapidly over the years. In the 2010s, other ways to detect HBT were developed and evaluated: indirect detection using the Athlete Biological Passport approach, and a few years later forensic DNA analysis to establish the presence of two different DNA in a blood sample after HBT. Despite the high specificity of the latter, the sensitivity was recently questioned in vivo. Nowadays, the flow cytometry method remains the method of choice for HBT detection and recent investigations helped to simplify the method and increase its specificity and sensitivity.