Effects of troponoids on mitochondrial function and cytotoxicity.
Daniel P BradleyAustin T O'DeaMolly E WoodsonQilan LiNathan L PonzarAlaina KnierBruce L RogersRyan P MurelliJohn E TavisPublished in: Antimicrobial agents and chemotherapy (2021)
The α-hydroxytropolones (αHT) are troponoid inhibitors of hepatitis B virus (HBV) replication that can target the HBV ribonuclease H (RNase H) with sub-micromolar efficacies. αHTs and related troponoids (tropones and tropolones) can be cytotoxic in cell lines as measured by MTS assays that assesses mitochondrial function. Earlier studies suggest that tropolones induce cytotoxicity through inhibition of mitochondrial respiration. Therefore, we screened 35 diverse troponoids for effects on mitochondrial function, mitochondrial:nuclear genome ratio, cytotoxicity, and reactive oxygen species (ROS) production. Troponoids as a class did not inhibit respiration or glycolysis, although the α-ketotropolone subclass did interfere with these processes. The troponoids had no impact on the mitochondrial DNA to nuclear DNA ratio after three days of compound exposure. Patterns of troponoid-induced cytotoxicity among three hepatic cell lines were similar for all compounds, but three potent HBV RNase H inhibitors were not cytotoxic in primary human hepatocytes. Tropolones and αHTs increased ROS production in cells at cytotoxic concentrations but had no effect at lower concentrations that efficiently inhibit HBV replication. Troponoid-mediated cytotoxicity was significantly decreased upon addition of the ROS scavenger N-acetylcysteine. These studies show that troponoids can increase ROS production at high concentrations within cell lines leading to cytotoxicity, but are not be cytotoxic in primary hepatocytes. Future development of αHTs as potential therapeutics against HBV may need to mitigate ROS production by altering compound design and/or by co-administration with ROS antagonists to ameliorate increased ROS levels.