Login / Signup

Computer-aided discovery of connected metal-organic frameworks.

Ohmin KwonJin Yeong KimSungbin ParkJae Hwa LeeJunsu HaHyunsoo ParkHoi Ri MoonJihan Kim
Published in: Nature communications (2019)
Composite metal-organic frameworks (MOFs) tend to possess complex interfaces that prevent facile and rational design. Here we present a joint computational/experimental workflow that screens thousands of MOFs and identifies the optimal MOF pairs that can seamlessly connect to one another by taking advantage of the fact that the metal nodes of one MOF can form coordination bonds with the linkers of the second MOF. Six MOF pairs (HKUST-1@MOF-5, HKUST-1@IRMOF-18, UiO-67@HKUST-1, PCN-68@MOF-5, UiO-66@MIL-88B(Fe) and UiO-67@MIL-88C(Fe)) yielded from our theoretical predictions were successfully synthesized, leading to clean single crystalline MOF@MOF, demonstrating the power of our joint workflow. Our work can serve as a starting point to accelerate the discovery of novel MOF composites that can potentially be used for many different applications.
Keyphrases
  • metal organic framework
  • small molecule
  • genome wide
  • squamous cell carcinoma
  • gene expression
  • lymph node
  • radiation therapy
  • rectal cancer
  • room temperature
  • tandem mass spectrometry