Login / Signup

Insights into the pores of microwave-assisted metal-imidazolate frameworks showing enhanced gas sorption.

Suvendu Sekhar MondalSubarna DeyAhmed G AttallahReinhard Krause-RehbergUlf Dietrich KahlertHans-Jürgen Holdt
Published in: Dalton transactions (Cambridge, England : 2003) (2018)
Microwave heating (MW)-assisted synthesis has been widely applied as an alternative method for the chemical synthesis of organic and inorganic materials. In this work, we report MW-assisted synthesis of three isostructural 3D frameworks with a flexible linker arm of the chelating linker 2-substituted imidazolate-4-amide-5-imidate, named IFP-7-MW (M = Zn, R = OMe), IFP-8-MW (M = Co; R = OMe) and IFP-10-MW (M = Co; R = OEt) (IFP = Imidazolate Framework Potsdam). These chelating ligands were generated in situ by partial hydrolysis of 2-substituted 4,5-dicyanoimidazoles under MW- and also conventional electrical heating (CE)-assisted conditions in DMF. The structure of these materials was determined by IR spectroscopy and powder X-ray diffraction (PXRD) and the identity of the materials synthesized under CE-conditions was established. Materials obtained from MW-heating show many fold enhancement of CO2 and H2 uptake capacities, compared to the analogous CE-heating method based materials. To understand the inner pore-sizes of IFP structures and variations of gas sorptions, we performed positron annihilation lifetime spectroscopy (PALS), which shows that MW-assisted materials have smaller pore sizes than materials synthesized under CE-conditions. The "kinetically controlled" MW-synthesized material has an inherent ability to trap extra linkers, thereby reducing the pore sizes of CE-materials to ultra/micropores. These ultramicropores are responsible for high gas sorption.
Keyphrases
  • high resolution
  • room temperature
  • energy transfer
  • risk assessment
  • molecular docking
  • magnetic resonance imaging
  • single molecule
  • mass spectrometry
  • molecular dynamics simulations
  • crystal structure