Chiral Perovskite Heterostructure Films of CsPbBr 3 Quantum Dots and 2D Chiral Perovskite with Circularly Polarized Luminescence Performance and Energy Transfer.
Yuan WangMu-Sen SongJiaqi ZhaoZhen LiTinglei WangHai WangHai-Yu WangYu WangPublished in: ACS nano (2024)
This work reports the synthesis of chiral perovskite heterostructure films by combining a two-dimensional (2D) chiral (R-/S-MBA) 2 PbI 4 perovskite with CsPbBr 3 quantum dots (QDs). The as-synthesized chiral heterostructure films exhibit obvious circularly polarized luminescence (CPL) properties, even though pure 2D chiral perovskite cannot present photoluminescence. It indicates that the chirality of the excited state of the QDs originates from the 2D chiral perovskite. The circular polarization-resolved transient absorption (TA) spectra further demonstrate that the CPL response of heterostructure films originates from the energy transfer between the chiral perovskite layer and QDs layer and the suppression of spin relaxation, which induces the imbalance of the spin population of excited states in QDs layer. In addition, the photoluminescence (PL), circular dichroism (CD), and CPL spectra of these heterostructure films can be controlled by varying the thickness and component of the chiral perovskite layer, which demonstrates that the anion exchange between chiral perovskite and CsPbBr 3 QDs can tune the chemical composition and optoelectronic properties due to the low bonding energy difference between them and decrease the strain within the QDs layer to reduce the radiative recombination lifetime. This work provides guidance for the synthesis of chiral perovskites with a strong CPL response and further provides insight into the origination of CPL.