Login / Signup

Improving image quality of sparse-view lung tumor CT images with U-Net.

Annika RiesTina DorostiJohannes ThalhammerDaniel SasseAndreas SauterFelix MeurerAshley BenneTobias LasserFranz PfeifferFlorian SchaffDaniela Pfeiffer
Published in: European radiology experimental (2024)
• Sparse-projection-view streak artifacts reduce the quality and usability of sparse-view CT images. • U-Net-based postprocessing removes sparse-view artifacts while maintaining diagnostically accurate IQ. • Postprocessed sparse-view CTs drastically increase radiologists' confidence in diagnosing lung metastasis.
Keyphrases
  • image quality
  • computed tomography
  • dual energy
  • neural network
  • deep learning
  • optical coherence tomography
  • high resolution
  • magnetic resonance imaging
  • magnetic resonance
  • artificial intelligence
  • contrast enhanced