Single-Cell Profiling Reveals Immune-Based Mechanisms Underlying Tumor Radiosensitization by a Novel Mn Porphyrin Clinical Candidate, MnTnBuOE-2-PyP 5+ (BMX-001).
Sun Up NohJinyeong LimSung-Won ShinYeeun KimWoong-Yang ParkInes Batinic-HaberleChanghoon ChoiWon ParkPublished in: Antioxidants (Basel, Switzerland) (2024)
Manganese porphyrins reportedly exhibit synergic effects when combined with irradiation. However, an in-depth understanding of intratumoral heterogeneity and immune pathways, as affected by Mn porphyrins, remains limited. Here, we explored the mechanisms underlying immunomodulation of a clinical candidate, MnTnBuOE-2-PyP 5+ (BMX-001, MnBuOE), using single-cell analysis in a murine carcinoma model. Mice bearing 4T1 tumors were divided into four groups: control, MnBuOE, radiotherapy (RT), and combined MnBuOE and radiotherapy (MnBuOE/RT). In epithelial cells, the epithelial-mesenchymal transition, TNF-α signaling via NF-кB , angiogenesis, and hypoxia-related genes were significantly downregulated in the MnBuOE/RT group compared with the RT group. All subtypes of cancer-associated fibroblasts (CAFs) were clearly reduced in MnBuOE and MnBuOE/RT. Inhibitory receptor-ligand interactions, in which epithelial cells and CAFs interacted with CD8+ T cells, were significantly lower in the MnBuOE/RT group than in the RT group. Trajectory analysis showed that dendritic cells maturation-associated markers were increased in MnBuOE/RT. M1 macrophages were significantly increased in the MnBuOE/RT group compared with the RT group, whereas myeloid-derived suppressor cells were decreased. CellChat analysis showed that the number of cell-cell communications was the lowest in the MnBuOE/RT group. Our study is the first to provide evidence for the combined radiotherapy with a novel Mn porphyrin clinical candidate, BMX-001, from the perspective of each cell type within the tumor microenvironment.
Keyphrases
- single cell
- epithelial mesenchymal transition
- dendritic cells
- rna seq
- early stage
- signaling pathway
- high throughput
- type diabetes
- rheumatoid arthritis
- radiation therapy
- locally advanced
- squamous cell carcinoma
- radiation induced
- metal organic framework
- cell therapy
- stem cells
- regulatory t cells
- inflammatory response
- cell proliferation
- skeletal muscle
- extracellular matrix
- optical coherence tomography
- adipose tissue
- rectal cancer