Login / Signup

Toxicology and safety study of L-tryptophan and its impurities for use in swine.

Ji-Eun ParkSoo Min KoHyo-Jeong HanJi-Young LeeDa Som JeongDong Hyun LeeIn Kyung HeoYong Uk ShinYang Hee KimWoo-Chan Son
Published in: Journal of applied toxicology : JAT (2024)
L-tryptophan, an essential amino acid for physiological processes, metabolism, development, and growth of organisms, is widely utilized in animal nutrition and human health as a feed additive and nutritional supplement, respectively. Despite its known benefits, safety concerns have arisen due to an eosinophilia-myalgia syndrome (EMS) outbreak linked to L-tryptophan consumed by humans. Extensive research has established that the EMS outbreak was caused by an L-tryptophan product that contained certain impurities. Therefore, safety validations are imperative to endorse the use of L-tryptophan as a supplement or a feed additive. This study was conducted in tertiary hybrid [(Landrace × Yorkshire) × Duroc] pigs to assess general toxicity and potential risks for EMS-related symptoms associated with L-tryptophan used as a feed additive. Our investigation elucidated the relationship between L-tryptophan and EMS in swine. No mortalities or clinical signs were observed in any animals during the administration period, and the test substance did not induce toxic effects. Hematological analysis and histopathological examination revealed no changes in EMS-related parameters, such as eosinophil counts, lung lesions, skin lesions, or muscle atrophy. Furthermore, no test substance-related changes occurred in other general toxicological parameters. Through analyzing the tissues and organs of swine, most of the L-tryptophan impurities that may cause EMS were not retained. Based on these findings, we concluded that incorporating L-tryptophan and its impurities into the diet does not induce EMS in swine. Consequently, L-tryptophan may be used as a feed additive throughout all growth stages of swine without safety concerns.
Keyphrases
  • human health
  • emergency medical
  • risk assessment
  • amino acid
  • oxidative stress
  • climate change
  • weight loss
  • depressive symptoms
  • data analysis