Reverse Transcription Can Critically Impact the Diagnostic Outcome of BCR::ABL1 Quantitative Real-Time RT-PCR.
Birgit SpiessHelga KleinerIrina TarnopolscaiaNicole NaumannAlice FabariusWolf-Karsten HofmannSusanne SausseleWolfgang SeifarthPublished in: Cancers (2023)
Reverse transcriptases (RT) are essential tools in BCR::ABL1 fusion transcript monitoring in chronic myeloid leukemia (CML). The RT type and cDNA priming method may impair the stoichiometry of cDNA synthesis, thereby potentially introducing a bias in BCR::ABL1 qRT-PCR data. Using the Acrometrix™ BCR::ABL1 reference panel and 37 clinical specimens, we have comparatively investigated the performance of the RTs MLV and SuperScript IV with random hexamer vs. target-specific priming. Quantitative RT-PCR results identified the priming type and RT type as major factors for diagnostic data variation, mainly due to the different efficacies of processing BCR::ABL1 low-copy-numbers (<50) compared to GUSB or ABL1 high-copy targets. The impairment of SuperScript IV in processing low- and high-copy-number RNA targets equally was not reflected by the diagnostically relevant Log ( BCR::ABL1/GUSB %) values. Therefore, the correct representation of housekeeping and BCR::ABL1 target genes should have priority when aiming at as high a number of housekeeping gene copies as possible. Our data suggest that for improving BCR::ABL1 assay sensitivity, increased RNA/cDNA amounts and the use of distinct RT/priming combinations are advantageous. However, for inter-laboratory harmonization, the proper conversion factor according to the CML international standard (IS) has to be reevaluated each time the grade of RT is changed.