Login / Signup

Ginsenoside Re Prevents Depression-like Behaviors via Inhibition of Inflammation, Oxidative Stress, and Activating BDNF/TrkB/ERK/CREB Signaling: An In Vivo and In Vitro Study.

Hongyu ChenMengmeng DongHuihan HeXinmiao PiaoXu HanRunxin LiHuiyi JiangXin LiBingjin LiRan Ji Cui
Published in: Journal of agricultural and food chemistry (2024)
Depression is a widespread disease, with high mortality and recurrence rates. Recent studies have shown that elevated cytokine levels are implicated in the molecular mechanisms of depression. Oxidative stress contributes to the stimulation of cytokine production. Growing evidence suggests that ginsenoside Re (Gs-Re) exerts a neuroprotective effect on the hippocampus by suppressing oxidative stress and inflammation. However, the effect and mechanism of Gs-Re in the treatment of depression remain understudied. This study aimed to evaluate the neuroprotective and antidepressant-like effects of Gs-Re and the possible underlying mechanisms. In this article, the antidepressant-like effect of the Gs-Re was studied both in vitro (H 2 O 2 -induced oxidative stress in HT-22 cells) and in vivo (reserpine-induced depressive model mice). Our results indicated that, at the cellular level, Gs-Re effectively enhanced cell survival following H 2 O 2 stimulation, inhibited the mass production of oxidative stress markers (MDA and ROS), and prevented the occurrence of apoptosis. Moreover, Gs-Re significantly reduced the levels of proinflammatory cytokines IL-1β, IL-6, and TNF-α and restored the abnormal mitochondrial membrane potential. Subsequently, Gs-Re treatment reversed reserpine-induced neuroinflammation and depressive-like behaviors in vivo and inhibited microglia overactivation. Furthermore, the alterations in the BDNF/TrkB/ERK/CREB signaling pathway induced by H 2 O 2 or reserpine in HT-22 cells or in the mouse hippocampus were significantly reversed by Gs-Re. K252a blocked the improvement of Gs-Re on depression-like behavior and eliminated the inhibition of oxidative stress and neuroinflammation in vivo. This study suggested that Gs-Re produces neuroprotective and depressive effects by inhibiting oxidative stress and inflammation and activating the BDNF/TrkB/ERK/CREB pathway.
Keyphrases