Login / Signup

Distribution of Intracranial Major Artery Stenosis/Occlusion According to RNF213 Polymorphisms.

Jinkwon KimYoung Seok ParkMin-Hee WooHui Jeong AnJung Oh KimHan Sung ParkChang Soo RyuOk Joon KimNam Keun Kim
Published in: International journal of molecular sciences (2020)
Intracranial major artery stenosis/occlusion (ICASO) is the major cause of ischemic stroke. Recent studies have suggested that variants of RNF213, a susceptibility gene for moyamoya disease (MMD), are also related to non-MMD ICASO. Regarding the predominant involvement of steno-occlusion on anterior circulation in MMD, we hypothesized that the ICASO distribution pattern (anterior/posterior) in non-MMD may differ according to RNF213 variants. This study analyzed 1024 consecutive Korean subjects without MMD who underwent computed tomography angiography (CTA) or magnetic resonance angiography (MRA). We evaluated four single nucleotide polymorphisms (SNPs) in the exon region of RNF213: 4448G > A (rs148731719), 4810G > A (rs112735431), 4863G > A (rs760732823), and 4950G > A (rs371441113). Associations between RNF213 variants and anterior/posterior ICASO were examined using multivariate logistic regression analysis. Anterior ICASO was present in 23.0% of study subjects, and posterior ICASO was present in 8.2%. The GA genotype of RNF213 4810G > A (adjusted odds ratio (AOR) [95% confidence interval (CI)], 2.39 [1.14-4.87] compared to GG; p = 0.018) and GA genotype of RNF213 4950G > A (AOR [95% CI], 1.71 [1.11-2.63] compared to GG; p = 0.015) were more frequent in subjects with anterior ICASO. The genotype frequency of RNF213 4863G > A differed significantly according to the presence of posterior ICASO. Further investigations of the functional and biological roles of RNF213 will improve our understanding of the pathomechanisms of ICASO and cerebrovascular disease.
Keyphrases
  • dna damage response
  • magnetic resonance
  • copy number
  • pet ct
  • genome wide
  • dna methylation
  • transcription factor