Adhesion to E-selectin primes macrophages for activation through AKT and mTOR.
Julie M DaviesKristen J RadfordJacob BegunJean-Pierre LévesqueIngrid G WinklerPublished in: Immunology and cell biology (2021)
The endothelial adhesion protein E-selectin/CD62E is not required for leukocyte homing, unlike closely related family member P-selectin/CD62P. As transmigration through the endothelium is one of the first steps in generating a local immune response, we hypothesized that E-selectin may play additional roles in the early stages of immune activation. We found contact with E-selectin, but not P-selectin or vascular cell adhesion molecule 1 (CD106), induced phosphorylation of protein kinase B (AKT) and nuclear factor-κB in mouse bone marrow-derived macrophages (BMDMs) in vitro. This occurred within 15 min of E-selectin contact and was dependent on phosphatidylinositol-3 kinase activity. Binding to E-selectin activated downstream proteins including mammalian target of rapamycin, p70 ribosomal protein S6 kinase and eukaryotic translation initiation factor 4E-binding protein 1. Functionally, adhesion to E-selectin induced upregulation of CD86 expression and CCL2 secretion. We next asked whether contact with E-selectin impacts further BMDM stimulation. We found enhanced secretion of both interleukin (IL)-10 and CCL2, but not tumor necrosis factor or IL-6 in response to lipopolysaccharide (LPS) stimulation after adhesion to E-selectin. Importantly, adhesion to E-selectin did not polarize BMDMs to one type of response but enhanced both arginase activity and nitric oxide production following IL-4 or LPS stimulation, respectively. In cultured human monocytes, adhesion to E-selectin similarly induced phosphorylation of AKT. Finally, when E-selectin was blocked in vivo in mice, thioglycollate-elicited macrophages showed reduced CD86 expression, validating our in vitro studies. Our results imply functions for E-selectin beyond homing and suggest that E-selectin plays an early role in priming and amplifying innate immune responses.
Keyphrases
- immune response
- protein kinase
- nitric oxide
- binding protein
- endothelial cells
- toll like receptor
- cell adhesion
- cell proliferation
- nuclear factor
- rheumatoid arthritis
- high glucose
- biofilm formation
- metabolic syndrome
- tyrosine kinase
- diabetic rats
- insulin resistance
- cell migration
- small molecule
- peripheral blood
- stress induced