Catalyst-Free Vertical ZnO-Nanotube Array Grown on p-GaN for UV-Light-Emitting Devices.
Norah AlwadaiIdris A AjiaBilal JanjuaTahani H FlembanSomak MitraNimer WehbeNini WeiSergei LopatinBoon S OoiIman S RoqanPublished in: ACS applied materials & interfaces (2019)
One-dimensional (1D) structures-based UV-light-emitting diode (LED) has immense potential for next-generation applications. However, several issues related to such devices must be resolved first, such as expensive material and growth methods, complicated fabrication process, efficiency droop, and unavoidable metal contamination due to metal catalyst that reduces device efficiency. To overcome these obstacles, we have developed a novel growth method for obtaining a high-quality hexagonal, well-defined, and vertical 1D Gd-doped n-ZnO nanotube (NT) array deposited on p-GaN films and other substrates by pulsed laser deposition. By adopting this approach, the desired high optical and structural quality is achieved without utilizing metal catalyst. Transmission electron microscopy measurements confirm that gadolinium dopants in the target form a transparent in situ interface layer to assist in vertical NT formation. Microphotoluminescence (PL) measurements of the NTs reveal an intense ZnO band edge emission without a defect band, indicating high quality. Carrier dynamic analysis via time-resolved PL confirms that the emission of n-ZnO NTs/p-GaN LED structure is dominated significantly by the radiative recombination process without efficiency droop when high carrier density is injected optically. We developed an electrically pumped UV Gd-doped ZnO NTs/GaN LED as a proof of concept, demonstrating its high internal quantum efficiency (>65%). The demonstrated performance of this cost-effective UV LED suggests its potential application in large-scale device production.
Keyphrases
- light emitting
- room temperature
- visible light
- highly efficient
- metal organic framework
- high resolution
- ionic liquid
- quantum dots
- reduced graphene oxide
- electron microscopy
- carbon dioxide
- high throughput
- risk assessment
- high speed
- drinking water
- molecular dynamics
- genome wide
- magnetic resonance
- dna damage
- single cell
- dna repair
- gene expression
- contrast enhanced
- low cost