Login / Signup

Bioinspired Surface Functionalization of Titanium Alloy for Enhanced Lubrication and Bacterial Resistance.

Sizhe LiuQian ZhangYing HanYulong SunYifei ZhangHongyu Zhang
Published in: Langmuir : the ACS journal of surfaces and colloids (2019)
In clinics it is extremely important for implanted devices to achieve the property of enhanced lubrication and bacterial resistance; however, such a strategy has rarely been reported in previous literature. In the present study, a surface functionalization method, motivated by articular cartilage-inspired superlubrication and mussel-inspired adhesion, was proposed to modify titanium alloy (Ti6Al4V) using the copolymer (DMA-MPC) synthesized via free radical copolymerization. The copolymer-coated Ti6Al4V (Ti6Al4V@DMA-MPC) was evaluated by X-ray photoelectron spectroscopy, water contact angle, and Raman spectra to confirm that the DMA-MPC copolymer was successfully coated onto the Ti6Al4V substrate. In addition, the tribological test, with the polystyrene microsphere and Ti6Al4V or Ti6Al4V@DMA-MPC as the tribopair, indicated that the friction coefficient was greatly reduced for Ti6Al4V@DMA-MPC. Furthermore, the bacterial resistance test showed that bacterial attachment was significantly inhibited for Ti6Al4V@DMA-MPC for the three types of bacteria tested. The enhanced lubrication and bacterial resistance of Ti6Al4V@DMA-MPC was due to the tenacious hydration shell formed surrounding the zwitterionic charges in the phosphorylcholine group of the DMA-MPC copolymer. In summary, a bioinspired surface functionalization strategy is developed in this study, which can act as a universal and promising method to achieve enhanced lubrication and bacterial resistance for biomedical implants.
Keyphrases
  • high resolution
  • systematic review
  • magnetic resonance imaging
  • magnetic resonance
  • computed tomography
  • cystic fibrosis
  • single molecule
  • molecular dynamics