Login / Signup

Metal cyclopropenylidene sandwich cluster and nanowire: structural, electronic, and magnetic properties.

Ying LiuHaifeng LvXiao-Jun Wu
Published in: Journal of physics. Condensed matter : an Institute of Physics journal (2021)
Organometallic sandwich clusters and nanowires can offer prototypes for molecular ferromagnet and nanoscale spintronic devices due to the strong coupling of local magnetic moments in the nanowires direction and experimental feasibility. Here, on the basis of first-principles calculations, we reportTMn(c-C3H2)n+1(TM= Ti, Mn;n= 1-4) sandwich clusters and 1D [TM(c-C3H2)]∞sandwich nanowires building from transitional metal and the smallest aromatic carbene of cyclopropenylidene (c-C3H2). Based on the results of lattice dynamic and thermodynamic studies, we show that the magnetic moment of Mnn(c-C3H2)n+1clusters increases linearly with the number ofn, and 1D [Mn(c-C3H2)]∞nanowire is a stable ferromagnetic semiconductor, which can be converted into half metal with carrier doping. In contrary, both Tin(c-C3H2)n+1and 1D [Ti(c-C3H2)]∞nanowire are nonmagnetic materials. This study reveals the potential application of the [TM(c-C3H2)]∞nanowire in spintronics.
Keyphrases
  • room temperature
  • molecularly imprinted
  • ionic liquid
  • molecular dynamics
  • solid phase extraction
  • high resolution
  • transition metal
  • reduced graphene oxide
  • tandem mass spectrometry