Paternal care regulates the timing, synchrony and success of hatching in a coral reef fish.
John E MajorisFritz A FranciscoCorinne M BurnsSimon J BrandlKaren M WarkentinPeter M BustonPublished in: Proceedings. Biological sciences (2022)
In oviparous species, the timing of hatching is a crucial decision, but for developing embryos, assessing cues that indicate the optimal time to hatch is challenging. In species with pre-hatching parental care, parents can assess environmental conditions and induce their offspring to hatch. We provide the first documentation of parental hatching regulation in a coral reef fish, demonstrating that male neon gobies ( Elacatinus colini ) directly regulate hatching by removing embryos from the clutch and spitting hatchlings into the water column. All male gobies synchronized hatching within 2 h of sunrise, regardless of when eggs were laid. Paternally incubated embryos hatched later in development, more synchronously, and had higher hatching success than artificially incubated embryos that were shaken to provide a vibrational stimulus or not stimulated. Artificially incubated embryos displayed substantial plasticity in hatching times (range: 80-224 h post-fertilization), suggesting that males could respond to environmental heterogeneity by modifying the hatching time of their offspring. Finally, paternally incubated embryos hatched with smaller yolk sacs and larger propulsive areas than artificially incubated embryos, suggesting that paternal effects on hatchling phenotypes may influence larval dispersal and fitness. These findings highlight the complexity of fish parental care behaviour and may have important, and currently unstudied, consequences for fish population dynamics.