Login / Signup

Total Synthesis of Analogs of A54145D and A54145A1 for Structure-Activity Relationship Studies.

Braden KraltRyan MoreiraMichael PalmerScott D Taylor
Published in: The Journal of organic chemistry (2020)
The total solid-phase synthesis and in vitro biological activity of a series of analogs of A54145 factor D (A5D) and A54145 factor A1 (A5A1), two cyclic lipodepsipeptide antibiotics, are reported. An on-resin cyclization strategy was employed to prepare A5A1 analogs in which Thr4, the residue involved in the depsi (ester) bond, was replaced with either diaminopropionic acid (DAPA), (2S,3R)-diaminobutyric acid (DABA), or serine, effectively replacing the ring-closing ester bond with an amide linkage or with a primary ester. Antibacterial studies with these four analogs revealed that, contrary to a previous report, replacing the ester bond with an amide bond significantly reduces biological activity, and that both the ester bond and the methyl group at the γ-position of Thr4 are crucial for activity. Consistent with literature reports, we found that the single substitution of either 3-hydroxyasparagine (HOAsn) or 3-methoxyaspartate (MeOAsp) with Asn or Asp, respectively, in A5D is more detrimental to activity than the double substitution where both HOAsn and MeOAsp are replaced with Asn or Asp, respectively.
Keyphrases