Total Synthesis of Analogs of A54145D and A54145A1 for Structure-Activity Relationship Studies.
Braden KraltRyan MoreiraMichael PalmerScott D TaylorPublished in: The Journal of organic chemistry (2020)
The total solid-phase synthesis and in vitro biological activity of a series of analogs of A54145 factor D (A5D) and A54145 factor A1 (A5A1), two cyclic lipodepsipeptide antibiotics, are reported. An on-resin cyclization strategy was employed to prepare A5A1 analogs in which Thr4, the residue involved in the depsi (ester) bond, was replaced with either diaminopropionic acid (DAPA), (2S,3R)-diaminobutyric acid (DABA), or serine, effectively replacing the ring-closing ester bond with an amide linkage or with a primary ester. Antibacterial studies with these four analogs revealed that, contrary to a previous report, replacing the ester bond with an amide bond significantly reduces biological activity, and that both the ester bond and the methyl group at the γ-position of Thr4 are crucial for activity. Consistent with literature reports, we found that the single substitution of either 3-hydroxyasparagine (HOAsn) or 3-methoxyaspartate (MeOAsp) with Asn or Asp, respectively, in A5D is more detrimental to activity than the double substitution where both HOAsn and MeOAsp are replaced with Asn or Asp, respectively.