Nano-mediated delivery of double-stranded RNA for gene therapy of glioblastoma multiforme.
Małgorzata GrabowskaBartosz F GrześkowiakKosma SzutkowskiDariusz WawrzyniakPaweł GłodowiczJan BarciszewskiStefan JurgaKatarzyna RolleRadosław MrówczyńskiPublished in: PloS one (2019)
Glioblastoma multiforme (GBM) is the most common type of malignant gliomas, characterized by genetic instability, intratumoral histopathological variability and unpredictable clinical behavior. Disappointing results in the treatment of gliomas with surgery, radiation and chemotherapy have fueled a search for new therapeutic targets and treatment modalities. Here we report new approach towards RNA interference therapy of glioblastoma multiforme based on the magnetic nanoparticles delivery of the double-stranded RNA (dsRNA) with homological sequences to mRNA of tenascin-C (TN-C), named ATN-RNA. The obtained nanocomposite consisted of polyethyleneimine (PEI) coated magnetic nanoparticles conjugated to the dsRNA show high efficiency in ATN-RNA delivery, resulting not only in significant TN-C expression level suppressesion, but also impairing the tumor cells migration. Moreover, synthesized nanomaterials show high contrast properties in magnetic resonance imaging (MRI) and low cytotoxicity combining with lack of induction of interferon response. We believe that the present work is a successful combination of effective, functional, non-immunostimulatory dsRNA delivery system based on magnetic nanoparticles with high potential for further application in GBM therapy.
Keyphrases
- magnetic nanoparticles
- magnetic resonance imaging
- nucleic acid
- high efficiency
- gene therapy
- binding protein
- contrast enhanced
- high grade
- magnetic resonance
- computed tomography
- stem cells
- photodynamic therapy
- squamous cell carcinoma
- dna methylation
- dendritic cells
- radiation therapy
- acute coronary syndrome
- atrial fibrillation
- genome wide
- gold nanoparticles
- risk assessment
- locally advanced
- combination therapy
- reduced graphene oxide
- high resolution
- long non coding rna
- highly efficient
- human health
- copy number
- liquid chromatography