An Electrospun Porous CuBi2O4 Nanofiber Photocathode for Efficient Solar Water Splitting.
Xiuhua YuanYeling LiuHui YuanBingxin LiuTianyu GuoHuawei ZhouXia LiPublished in: Polymers (2021)
While the CuBi2O4-based photocathode has emerged as an ideal candidate for photoelectrochemical water splitting, it is still far from its theoretical values due to poor charge carrier transport, poor electron-hole separation, and instability caused by self-photoelectric-corrosion with electrolytes. Establishing synthesis methods to produce a CuBi2O4 photocathode with sufficient cocatalyst sites would be highly beneficial for water splitting. Here, the platinum-enriched porous CuBi2O4 nanofiber (CuBi2O4/Pt) with uniform coverage and high surface area was prepared as a photocathode through an electrospinning and electrodeposition process for water splitting. The prepared photocathode material was composed of a CuBi2O4 nanofiber array, which has a freestanding porous structure, and the Pt nanoparticle is firmly embedded on the rough surface. The highly porous nanofiber structures allow the cocatalyst (Pt) better alignment on the surface of CuBi2O4, which can effectively suppress the electron-hole recombination at the electrolyte interface. The as-fabricated CuBi2O4 nanofiber has a tetragonal crystal structure, and its band gap was determined to be 1.8 eV. The self-supporting porous structure and electrocatalytic activity of Pt can effectively promote the separation of electron-hole pairs, thus obtaining high photocurrent density (0.21 mA/cm2 at 0.6 V vs. RHE) and incident photon-to-current conversion efficiency (IPCE, 4% at 380 nm). This work shows a new view for integrating an amount of Pt nanoparticles with CuBi2O4 nanofibers and demonstrates the synergistic effect of cocatalysts for future solar water splitting.
Keyphrases