Reversible Change between Excimer and Monomer Forms of Perylene Induced by Water Absorption and Dehydration of Poly-N-isopropylacrylamide Gel.
Atom HamasakiKei KuboMiki HarashimaAkio KatsukiSumio OzekiPublished in: The journal of physical chemistry. B (2021)
Several fluorescence patterns derived from the excimer states of perylene have been reported, but most of these have been obtained from rigid forms such as crystals or for perylene embedded in hard polymers. We observed perylene excimer emission on absorption of water by a poly-N-isopropylacrylamide gel containing perylene molecules, which were not fixed to the gel framework by chemical bonding. We propose that this emission arises because the hydrophobic perylene molecules cannot dissolve in water and form aggregates. The perylene aggregation was quickly lost on dehydration of the gel, and the luminescence reverted to that of the monomer. In a dehydrated environment, perylene was rapidly dispersed in the gel network. In other words, solid-liquid phase separation of perylene was induced by uptake of water into the gel, and perylene dissolved in the gel on dehydration. Because the outside of the gel is always in an aqueous environment, perylene will remain semipermanently in the gel. Therefore, monomer emission and excimer emission can be switched reversibly and repeatedly.