Login / Signup

FBG-Based Soft System for Assisted Epidural Anesthesia: Design Optimization and Clinical Assessment.

Francesca De TommasiChiara RomanoDaniela Lo PrestiCarlo MassaroniMassimiliano CarassitiEmiliano Schena
Published in: Biosensors (2022)
Fiber Bragg grating sensors (FBGs) are considered a valid sensing solution for a variety of medical applications. The last decade witnessed the exploitation of these sensors in applications ranging from minimally invasive surgery to biomechanics and monitoring physiological parameters. Recently, preliminary studies investigated the potential impact of FBGs in the management of epidural procedures by detecting when the needle reaches the epidural space with the loss of resistance (LOR) technique. In this article, we propose a soft and flexible FBG-based system capable of detecting the LOR, we optimized the solution by considering different designs and materials, and we assessed the feasibility of the optimized soft sensor (SS) in clinical settings. The proposed SS addresses some of the open challenges in the use of a sensing solution during epidural punctures: it has high sensitivity, it is non-invasive, the sensing element does not need to be inserted within the needle, and the clinician can follow the standard clinical practice. Our analysis highlights how the material and the design impact the system response, and thus its performance in this scenario. We also demonstrated the system's feasibility of detecting the LOR during epidural procedures.
Keyphrases
  • spinal cord
  • clinical practice
  • healthcare
  • ultrasound guided
  • spinal cord injury
  • minimally invasive
  • solid state
  • low cost
  • mass spectrometry
  • high resolution