Synthesis of Triazole-Containing Furanosyl Nucleoside Analogues and Their Phosphate, Phosphoramidate or Phoshonate Derivatives as Potential Sugar Diphosphate or Nucleotide Mimetics.
Andreia FortunaPaulo J CostaM Fátima M PiedadeMaria Conceiçao OliveiraNuno Manuel XavierPublished in: ChemPlusChem (2021)
The synthesis of stable and potentially bioactive xylofuranosyl nucleoside analogues and potential sugar diphosphate or nucleotide mimetics comprising a 1,2,3-triazole moiety is reported. 3'-O-Methyl-branched N-benzyltriazole isonucleosides were accessed in 5-7 steps and 42-54 % overall yields using a Cu(I)-catalyzed cycloaddition of 3-O-propargyl-1,2-O-isopropylidene-α-D-xylofuranose with benzyl azide as key step. Related isonucleotides were obtained by 5-O-phosphorylation of acetonide-protected 3-O-propargyl xylofuranose and further "click" cycloaddition or by Staudinger-phosphite reaction of a 5-azido N-benzyltriazole isonucleoside. Hydroxy-, amino- or bromomethyl triazole 5'-isonucleosides were synthesized by thermal cycloaddition of 5-azido 3-O-benzyl/dodecyl xylofuranoses with propargyl alcohol, propargylamine or propargyl bromide. Better yields (82-85 %) were obtained when using propargyl alcohol and a high 1,4-regioselectivity was attained with propargyl bromide. Further O/N-phosphorylation or Arbuzov reaction led to (triazolyl)methyl phosphates, phosphoramidates or phosphonates. The latter were converted into uracil nucleoside 5'-(triazolyl)methyl phosphonates as prospective nucleoside diphosphate mimetics.