Early sensory gain control is dominated by obligatory and global feature-based attention in top-down shifts of combined spatial and feature-based attention.
Christopher GundlachSebastian WehleMatthias M MüllerPublished in: Cerebral cortex (New York, N.Y. : 1991) (2023)
What are the dynamics of global feature-based and spatial attention, when deployed together? In an attentional shifting experiment, flanked by three control experiments, we investigated neural temporal dynamics of combined attentional shifts. For this purpose, orange- and blue-frequency-tagged spatially overlapping Random Dot Kinematograms were presented in the left and right visual hemifield to elicit continuous steady-state-visual-evoked-potentials. After being initially engaged in a fixation cross task, participants were at some point in time cued to shift attention to one of the Random Dot Kinematograms, to detect and respond to brief coherent motion events, while ignoring all such events in other Random Dot Kinematograms. The analysis of steady-state visual-evoked potentials allowed us to map time courses and dynamics of early sensory-gain modulations by attention. This revealed a time-invariant amplification of the to-be attended color both at the attended and the unattended side, followed by suppression for the to-be-ignored color at attended and unattended sides. Across all experiments, global and obligatory feature-based selection dominated early sensory gain modulations, whereas spatial attention played a minor modulatory role. However, analyses of behavior and neural markers such as alpha-band activity and event-related potentials to target- and distractor-event processing, revealed clear modulations by spatial attention.