A voltage-controllable VO 2 based metamaterial perfect absorber for CO 2 gas sensing application.
Xiaocan XuRuijia XuYu-Sheng LinPublished in: Nanoscale (2022)
Vanadium dioxide (VO 2 ) based metamaterial perfect absorbers (MPAs) have high potential application values in sensing gas molecules. However, a tuning mechanism via temperature manipulation lacks the compatibility with electronic devices. In this study, a voltage-controllable device is proposed by integrating an MPA and micro-electro-mechanical system (MEMS) based microheater for CO 2 gas sensing application. The MPA is composed of a metal-dielectric-metal (MDM) structure and tailored to form an H-shaped metamaterial. The central bar of the H-shaped metamaterial is composed of a VO 2 material, which exhibits perfect absorption in the CO 2 gas absorption spectrum, i.e. , at a wavelength of 2.70 μm. The intergated microheater is patterned by using fractal theory to provide high heating temperature and high uniformity of surface temperature. By precisely driving a DC bias voltage on the microheater, the MPA is heated and it can exhibit switchable optical properties with high efficiency. These results provide a strategy to open an avenue for sensors, absorbers, switches, and programmable devices in infrared wavelength range applications.