Critical Power and Maximal Lactate Steady State in Cycling: "Watts" the Difference?
Kevin CaenDavid C PooleAnni VanhataloAndrew M JonesPublished in: Sports medicine (Auckland, N.Z.) (2024)
From a physiological perspective, the delineation between steady-state and non-steady-state exercise, also referred to as the maximal metabolic steady state, holds paramount importance for evaluating athletic performance and designing and monitoring training programs. The critical power and the maximal lactate steady state are two widely used indices to estimate this threshold, yet previous studies consistently reported significant discrepancies between their associated power outputs. These findings have fueled the debate regarding the interchangeability of critical power and the maximal lactate steady state in practice. This paper reviews the methodological intricacies intrinsic to the determination of these thresholds, and elucidates how inappropriate determination methods and methodological inconsistencies between studies have contributed to the documented differences in the literature. Through a critical examination of relevant literature and by integration of our laboratory data, we demonstrate that differences between critical power and the maximal lactate steady state may be reconciled to only a few Watts when applying appropriate and strict determination criteria, so that both indices may be used to estimate the maximal metabolic steady-state threshold in practice. To this end, we have defined a set of good practice guidelines to assist scientists and coaches in obtaining the most valid critical power and maximal lactate steady state estimates.
Keyphrases