NMR 1H-1H Dipole Relaxation in Fluids: Relaxation of Individual 1H-1H Pairs versus Relaxation of Molecular Modes.
Dilipkumar N AsthagiriWalter G ChapmanGeorge J HirasakiPhilip M SingerPublished in: The journal of physical chemistry. B (2020)
The intramolecular 1H NMR dipole-dipole relaxation of molecular fluids has traditionally been interpreted within the Bloembergen-Purcell-Pound (BPP) theory of NMR intramolecular relaxation. The BPP theory draws upon Debye's theory for describing the rotational diffusion of the 1H-1H pair and predicts a monoexponential decay of the 1H-1H dipole-dipole autocorrelation function between distinct spin pairs. Using molecular dynamics (MD) simulations, we show that for both n-heptane and water this is not the case. In particular, the autocorrelation function of individual 1H-1H intramolecular pairs itself evinces a rich stretched-exponential behavior, implying a distribution in rotational correlation times. However, for the high-symmetry molecule neopentane, the individual 1H-1H intramolecular pairs do conform to the BPP description, suggesting an important role of molecular symmetry in aiding agreement with the BPP model. The intermolecular autocorrelation functions for n-heptane, water, and neopentane also do not admit a monoexponential behavior of individual 1H-1H intermolecular pairs at distinct initial separations. We suggest expanding the autocorrelation function in terms of modes, provisionally termed molecular modes, that do have an exponential relaxation behavior. With care, the resulting Fredholm integral equation of the first kind can be inverted to recover the probability distribution of the molecular modes. The advantages and limitations of this approach are noted.