Login / Signup

Removal of p-arsanilic acid and phenylarsonic acid from water by Fenton coagulation process: influence of substituted amino group.

Qiang PengWenze XuWeixiao QiChengzhi HuHuijuan LiuJiuhui Qu
Published in: Environmental science and pollution research international (2021)
Phenylarsonic acid compounds, which were widely used in poultry and swine production, are often introduced to agricultural soils with animal wastes. Fenton coagulation process is thought as an efficient method to remove them. However, the substituted amino group could apparently influence the removal efficiency in Fenton coagulation process. Herein, we investigated the optimal conditions to treat typical organoarsenic contaminants (p-arsanilic acid (p-ASA) and phenylarsonic acid (PAA)) in aqueous solution based on Fenton coagulation process for oxidizing them and capturing the released inorganic arsenic, and elucidated the influence mechanism of substituted amino group on removal. Results showed that the pH value and the dosage of H2O2 and Fe2+ significantly influenced the performance of the oxidation and coagulation processes. The optimal conditions for removing 20 mg L-1-As in this research were 40mg L-1 Fe2+ and 60mg L-1 H2O2 (the mass ratio of Fe2+/H2O2 = 1.5), initial solution pH of 3.0, and final solution pH of 5.0 adjusting after 30-min Fenton oxidation reaction. Meanwhile, the substituted amino group made p-ASA much more easily be attacked by ·OH than PAA and supply one more binding sites for forming complexes with Fe3+ hydrolysates, resulting in 36% higher oxidation rate and 7% better coagulation performance at the optimal conditions.
Keyphrases
  • hydrogen peroxide
  • aqueous solution
  • wastewater treatment
  • molecular docking
  • visible light
  • heavy metals
  • risk assessment
  • mass spectrometry
  • molecular dynamics simulations
  • high speed