Electrocatalytic Oxidation of Methanol, Ethanol, and Glycerol on Ni(OH)2 Nanoparticles Encapsulated with Poly[Ni(salen)] Film.
José L Bott-NetoThiago S MartinsSérgio A S MachadoEdson A TicianelliPublished in: ACS applied materials & interfaces (2019)
This study describes a systematic investigation of the electrocatalytic activity of poly[Ni(salen)] films, as catalysts for the electro-oxidation of Cn alcohols (Cn = methanol, ethanol, and glycerol) in alkaline medium. The [Ni(salen)] complex was electropolymerized on a glassy carbon surface and electrochemically activated in NaOH solution by cyclic voltammetry. X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy results indicate that during the activation step the polymeric film hydrolyzes, leading to the formation of β-Ni(OH)2 spherical nanoparticles, with an average size of 2.4 ± 0.5 nm, encapsulated with the poly[Ni(salen)] film. Electrochemical results obtained together with the in situ Fourier transform infrared spectroscopy confirm that the electro-oxidation of methanol, ethanol, and glycerol occurs by involving a cycling oxidation of β-Ni(OH)2 with the formation of β-NiOOH species, followed by the charge transfer to the alcohols, which regenerates β-Ni(OH)2. Analyses of the oxidation products at low potentials indicate that the major product obtained during the oxidation of methanol and glycerol is the formate, while the oxidation of ethanol leads to the formation of acetate. On the other hand, at high potentials (E = 0.6 V), there is evidence that the oxidation of Cn alcohols leads to carbonate ions as an important product.
Keyphrases
- metal organic framework
- hydrogen peroxide
- electron microscopy
- transition metal
- reduced graphene oxide
- electron transfer
- high resolution
- room temperature
- visible light
- lymph node metastasis
- carbon dioxide
- squamous cell carcinoma
- mass spectrometry
- magnetic resonance imaging
- ionic liquid
- quantum dots
- high intensity
- high speed
- liquid chromatography
- dual energy
- simultaneous determination
- carbon nanotubes
- walled carbon nanotubes