Transgenic (Tg) mouse models of Alzheimer's disease (AD) have been extensively used to study the pathophysiology of this dementia and to test the efficacy of drugs to treat AD. The 5XFAD Tg mouse, which contains two presenilin-1 and three amyloid precursor protein (APP) mutations, was designed to rapidly recapitulate a portion of the pathologic alterations present in human AD. APP and its proteolytic peptides, as well as apolipoprotein E and endogenous mouse tau, were investigated in the 5XFAD mice at 3 months, 6 months, and 9 months. AD and nondemented subjects were used as a frame of reference. APP, amyloid-beta (Aβ) peptides, APP C-terminal fragments (CT99, CT83, AICD), β-site APP-cleaving enzyme, and APLP1 substantially increased with age in the brains of 5XFAD mice. Endogenous mouse tau did not show age-related differences. The rapid synthesis of Aβ and its impact on neuronal loss and neuroinflammation make the 5XFAD mice a desirable paradigm to model AD.
Keyphrases
- mouse model
- high fat diet induced
- computed tomography
- endothelial cells
- contrast enhanced
- cognitive impairment
- cognitive decline
- magnetic resonance imaging
- multidrug resistant
- traumatic brain injury
- cerebrospinal fluid
- neoadjuvant chemotherapy
- magnetic resonance
- single molecule
- small molecule
- cerebral ischemia
- induced pluripotent stem cells
- brain injury
- lymph node
- sensitive detection
- quantum dots