Login / Signup

Machine Learning-Based Prediction of Hemoglobinopathies Using Complete Blood Count Data.

Anoeska SchipperMatthieu RuttenAdriaan van GammerenCornelis L HarteveldEloísa UrrechagaFloor WeerkampGijs den BestenJohannes KrabbeJennichjen SlompLise SchoonenMaarten BroerenMerel van WijnenMirelle J A J HuijskensTamara KoopmannBram van GinnekenRon KustersSteef Kurstjens
Published in: Clinical chemistry (2024)
Both the XGB and logistic regression model demonstrate high accuracy in predicting a broad range of hemoglobinopathies and are effective in differentiating hemoglobinopathies from IDA. Integration of these models into the laboratory information system facilitates automated hemoglobinopathy detection using routine CBC parameters.
Keyphrases
  • machine learning
  • big data
  • deep learning
  • artificial intelligence
  • electronic health record
  • clinical practice
  • high throughput
  • health information
  • healthcare
  • peripheral blood
  • magnetic resonance imaging
  • single cell