Ferroptosis and ferroptosis-inducing nanomedicine as a promising weapon in combination therapy of prostate cancer.
Mengjun HuangQiliang TengFei CaoJinsheng HuangPang JunPublished in: Biomaterials science (2024)
Incidence and mortality of prostate cancer (PCa) rank in the top five among male tumors. However, single treatment modalities are often restricted due to biochemical recurrence and drug resistance, necessitating the development of new approaches for the combination treatment of castration-resistant and neuroendocrine PCa. Ferroptosis is characterized by the accumulation of iron-overload-mediated lipid peroxidation and has shown promising outcomes in anticancer treatment, prompting us to present a review reporting the application of ferroptosis in the treatment of PCa. First, the process and mechanism of ferroptosis are briefly reviewed. Second, research advances combining ferroptosis-inducing agents and clinical treatment regimens, which exhibit a "two-pronged approach" effect, are further summarized. Finally, the recent progress on ferroptosis-inducing nanomaterials for combination anticancer therapy is presented. This review is expected to provide novel insights into ferroptosis-based combination treatment in drug-resistant PCa.