A comparison of hippocampal and retrosplenial cortical spatial and contextual firing patterns.
Dev Laxman SubramanianAdam M P MillerDavid M SmithPublished in: Hippocampus (2024)
The hippocampus (HPC) and retrosplenial cortex (RSC) are key components of the brain's memory and navigation systems. Lesions of either region produce profound deficits in spatial cognition and HPC neurons exhibit well-known spatial firing patterns (place fields). Recent studies have also identified an array of navigation-related firing patterns in the RSC. However, there has been little work comparing the response properties and information coding mechanisms of these two brain regions. In the present study, we examined the firing patterns of HPC and RSC neurons in two tasks which are commonly used to study spatial cognition in rodents, open field foraging with an environmental context manipulation and continuous T-maze alternation. We found striking similarities in the kinds of spatial and contextual information encoded by these two brain regions. Neurons in both regions carried information about the rat's current spatial location, trajectories and goal locations, and both regions reliably differentiated the contexts. However, we also found several key differences. For example, information about head direction was a prominent component of RSC representations but was only weakly encoded in the HPC. The two regions also used different coding schemes, even when they encoded the same kind of information. As expected, the HPC employed a sparse coding scheme characterized by compact, high contrast place fields, and information about spatial location was the dominant component of HPC representations. RSC firing patterns were more consistent with a distributed coding scheme. Instead of compact place fields, RSC neurons exhibited broad, but reliable, spatial and directional tuning, and they typically carried information about multiple navigational variables. The observed similarities highlight the closely related functions of the HPC and RSC, whereas the differences in information types and coding schemes suggest that these two regions likely make somewhat different contributions to spatial cognition.
Keyphrases
- health information
- white matter
- spinal cord
- working memory
- traumatic brain injury
- resting state
- functional connectivity
- magnetic resonance
- spinal cord injury
- multiple sclerosis
- healthcare
- autism spectrum disorder
- oxidative stress
- brain injury
- mass spectrometry
- high resolution
- intellectual disability
- cognitive impairment