Login / Signup

Dopamine-Modified Hyaluronic Acid Hydrogel Adhesives with Fast-Forming and High Tissue Adhesion.

Ding ZhouShangzhi LiMinjie PeiHongjun YangShaojin GuYongzhen TaoDezhan YeYingshan ZhouWeilin XuPu Xiao
Published in: ACS applied materials & interfaces (2020)
Commercial or clinical tissue adhesives are currently limited due to their weak bonding strength on wet biological tissue surface, low biological compatibility, and slow adhesion formation. Although catechol-modified hyaluronic acid (HA) adhesives are developed, they suffer from limitations: insufficient adhesiveness and overfast degradation, attributed to low substitution of catechol groups. In this study, we demonstrate a simple and efficient strategy to prepare mussel-inspired HA hydrogel adhesives with improved degree of substitution of catechol groups. Because of the significantly increased grafting ratio of catechol groups, dopamine-conjugated dialdehyde-HA (DAHA) hydrogels exhibit excellent tissue adhesion performance (i.e., adhesive strength of 90.0 ± 6.7 kPa), which are significantly higher than those found in dopamine-conjugated HA hydrogels (∼10 kPa), photo-cross-linkable HA hydrogels (∼13 kPa), or commercially available fibrin glues (2-40 kPa). At the same time, their maximum adhesion energy is 384.6 ± 26.0 J m-2, which also is 40-400-fold, 2-40-fold, and ∼8-fold higher than those of the mussel-based adhesive, cyanoacrylate, and fibrin glues, respectively. Moreover, the hydrogels can gel rapidly within 60 s and have a tunable degradation suitable for tissue regeneration. Together with their cytocompatibility and good cell adhesion, they are promising materials as new biological adhesives.
Keyphrases