Login / Signup

Structural Evolution of a Retinal Chromophore in the Photocycle of Halorhodopsin from Natronobacterium pharaonis.

Misao MizunoAyumi NakajimaHideki KandoriYasuhisa Mizutani
Published in: The journal of physical chemistry. A (2018)
We revealed the chloride ion pumping mechanism in halorhodopsin from Natronobacterium pharaonis ( pHR) by exploring sequential structural changes in the retinal chromophore during its photocycle using time-resolved resonance Raman (RR) spectroscopy on the nanosecond to millisecond time scales. A series of RR spectra of the retinal chromophore in the unphotolyzed state and of the three intermediates of pHR were obtained. Using singular value decomposition analysis of the C═C and C-C stretch bands in the time-resolved RR spectra, we identified the spectra of the K, L, and N intermediates. We focused on structural markers of the RR bands to explore the structure of the retinal chromophore. In the unphotolyzed state, the retinal chromophore is in the planar all- trans, 15- anti geometry. The bound ion affects the polyene chain but does not interact with the protonated Schiff base. In the observed intermediates, the chromophore is in the 13- cis configuration. The chromophore in the K intermediate is distorted due to the photoisomerization of retinal. The hydrogen bond is weak in the unphotolyzed state and in the K intermediate, resulting in exchange of the hydrogen-bond acceptor to a water molecule in the K-to-L transition, relaxation of the polyene chain distortion, and generation of an alternative distortion near the Schiff base. The bound halide ion interacts with the protonated Schiff base through the water molecule bound to the protonated Schiff base. In the L-to-N transition, the hydrogen acceptor of the protonated Schiff base switches from the water molecule to another species, although the strong hydrogen bond of the protonated Schiff base remains. This paper reports the first observation of sequential changes in the RR spectra in the pHR photocycle, provides information on the structural evolution of the retinal chromophore, and proposes a model for chloride ion translocation in pHR.
Keyphrases
  • optical coherence tomography
  • diabetic retinopathy
  • optic nerve
  • density functional theory
  • health information
  • emergency department
  • mass spectrometry
  • single cell
  • drug induced